
Agloe: What the map makers of the 1930s can teach us about
protecting data in 2018

Captains log star date 47634.44...

So recently (read: in August) I did a talk on the PyCon Australia Security and Privacy track about Canary Tokens which you can watch

on YouTube. More recently, in October I gave the same talk (but better) at The Open Web Application Security Project (OWASP)

AppSec Day in Melbourne.

I thought it would be a nice follow up to talk more about some of the technical and non‑technical points I addressed there, as well as

talk a bit more about deploying the Thinkst Canary Tokens in your own environment.

Paper Towns

Phantom settlements or "Paper Towns" are settlements, towns or locations that appear in maps but don't actually exist. They are

typically created by accident, or more often than not are created as copyright traps. This is done because the very nature of maps

describes "what is" and copyright infringement can be hard to prove.

Throughout history there have been a number of notable examples including:

Agloe, Colchester, NY ‑ first appeared in 1930

Argleton, Lancashire, UK ‑ first identified in 2008 by Mike Nolan

Beatosu and Goblu, Ohio, US ‑ first appeared in the 1978–1979 official state map of Michigan

However, many more of these locations exist. At least on paper.

Agloe came to exist after the General Drafting Company was founded by Otto G. Lindberg in 1909. In 1930 Lindberg and his assistant

Ernest Alpers assigned an anagram of their initials to a dirt‑road intersection (AGLOE) as a copyright trap to catch out map thieves.

In the 1950s a small general store was built on the intersection on the map and named "Agloe General Store" because the name was on

the Esso maps. At the time the General Drafting Company was the sole provider of maps for Esso.

A number of years later Rand McNally a competing map company added Agloe to their maps. This revealed the trap and Esso tried to

sue McNally for copyright infringement. However, McNally had got the name of the "hamlet" from the Delaware County administration ‑

as it was pointed out because the Agloe General Store existed, so did the town, and no infringement could be shown.

The store eventually went out of business, but the town continued to appear on maps, Google Maps listed Agloe as a town until it was

silently removed in 2014.

So, what does the little town of Agloe, NY have in common with modern day data protection?

https://www.youtube.com/watch?v=dA_rwYoy81U
http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-map.jpg

When doing assessments, we often find that organisations put considerable effort into perimeter security ‑ firewalls, application

security etc. However, very often once you get past the hard‑crunchy outside, you find yourself in their soft squishy centre, in some

cases you're dropped right in the middle of their network.

In other cases, you may not be as concerned about your perimeter as you are about malicious actors inside your companies’ network.

That's where canary tokens come into the picture.

Canary Tokens

Like Agloe, canary tokens can be a piece of information that allow you to implant traps in your systems. When an unsuspecting hacker

or malicious user comes along and interacts with the canary you get a notification. It's important to note though that for canary tokens

to be useful to you they should be enticing to an attacker ‑ you want them to find them and trigger them, tokens should also be

detectable, if their usage goes unnoticed because of a lack of logging and monitoring canaries lose all value. Finally, canary tokens

should have no value other than detecting their use ‑ if there is any meaningful value to the token if an attacker gets hold of one it

potentially spells game over.

This technology is not new, and canaries and tripwires have also been discussed at length by others.

In 1994 Eugene H. Spafford & Gene H. Kim from Purdue University wrote a paper on Using Integrity Checkers for Intrusion

Detection.

In 2003 Lance Spitzner from Symantec wrote about Canary Tokens

Additionally, a number of canary and canary like solutions exist, Canary Watch was developed by a group of organisations who helped

monitor organisations published statements about receiving legal process that it would otherwise be prohibited from saying it had

received.

Today though, I'll be writing about Canary Tokens created by Thinkst Applied Research.

Why Canary Tokens?

For small‑to‑medium businesses canary tokens are cost effective, leveraging existing logging and monitoring infrastructure as well as

providing cross‑platform tokens. Additionally, when deployed correctly canaries have a low signal to noise ratio, meaning that unlike

canaries in coal mines, you shouldn't hear a peep from them unless someone has forgotten their security training, or something has

gone wrong and you have an intruder on your network.

The downside to this though is they only provide a microscopic view of what is going on, so just because you have deployed some

tokens throughout the system, it doesn't mean other security logging and monitoring can be disabled or ignored.

https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2114&context=cstech
https://www.symantec.com/connect/articles/honeytokens-other-honeypot
https://canarywatch.org/
http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-canarywatch.png
https://canarytokens.org/generate

The reality is to get the most value out of canary tokens, they are best used in conjunction with other security best practices, as I

mentioned previously, if you are not logging and alerting, canaries will provide you no benefit.

Additionally, if you are running SlackOps you will be disappointed to find out that the Thinkst solution does not currently support Slack

Web Hooks.

Canary Tokens by Thinkst

As of August 2018, Canary Tokens offers 15 types of tokens including:

Web bug / URL token ‑ Alert when a URL is visited

DNS token ‑ Alert when a hostname is requested

Unique email address ‑ Alert when an email is sent to a unique address

Custom Image Web bug ‑ Alert when an image you uploaded is viewed

Microsoft Word Document ‑ Get alerted when a document is open in Microsoft Word

Acrobat Reader PDF Document ‑ Get Alerted when a PDF document is opened in Acrobat Reader

Windows Folder ‑ Be notified when a Windows Folder is browsed in Windows Explorer

Custom exe / binary ‑ Fire an alert when an EXE or DLL is executed

Cloned Website ‑ Trigger and alert when your website is cloned

SQL server ‑ Get alerted when MS SQL Server databases are accessed

QR code ‑ Generate a QR code for physical tokens

SVN ‑ Alert when someone checks out an SVN repository

AWS Keys ‑ Alert when AWS keys are used

Fast Redirect ‑ Alert when a URL is visited (user is redirected)

Slow Redirect ‑ Alert when a URL is visited (user is redirected, and fingerprinting is done)

While they do not currently have a token for Git based version control, they tweeted on August 24, 2018 that they are working on a

newer implementation:

How can we deploy Canary Tokens?

How can you deploy canaries you may ask? And I will reply "That is a great question reader! It's so great I drew a little picture!" now of

course your network is going to be a little different. So my example today is going to be a small flat network with a mobile device, a

couple of laptops, externally hosted mail (like Gmail) and externally hosted file hosting (like Dropbox or Google Drive). The proof is left

as an exercise to the reader.

I preface this diagram by saying, I am not good at network diagrams.

http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-tweet.png

The idea is that everything in some way or another is connected to the Internet and when the canary is triggered it will call back to the

Digital Ocean droplet and send you an email alerting you to the breach.

It's hard to give a "one‑size‑fits‑all" response to what sort of tokens you can deploy in this sort of network configuration because it

depends. Instead I'll endeavour to give a "one‑size‑fits‑a‑few", you'll notice I've put a little canary symbol next to the locations I think

would make good locations for a/many canary tokens:

Web Bug/URL

In both of my talks I have found this to be the best example to give, for placing canaries in e‑mail/file syncs/ mobile phones, basically

anywhere. Web Bugs and URLs are versatile and easy to deploy no matter what you do or how you do it.

An example of what a Web Bug/URL canary might look like:

Simple, elegant, schön.

E‑Mail addresses

http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-diagram.png
http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-webbugexample.png

Like Web Bugs, e‑mail addresses are versatile little buggers. You can save them in your contacts on your phone, or on your computer

and if they ever get e‑mailed you know something has gone wrong and someone is sneaking through your e‑mails or your contacts.

QR Codes

Normally I like to give the example of putting a QR code inside a phone case ‑ like in the actual phone, but with modern manufacturing

and the way manufacturers now approach right to repair, by making phone as impenetrable as Fort Knox this becomes a little harder ‑

but placing QR codes inside phone covers or other sneaky locations ‑ wallets, stuck to the bottom of your laptop ‑ you provide a little

tantalising "I'm not what you were expecting... scan me!".

<script async

src="//embedr.flickr.com/assets/client‑code.js" charset="utf‑8"></script>

Amazon Web Services (AWS) Tokens

I feel like when ever I mention AWS Tokens I always have to do a shout‑out to PROJECT SPACECRAB by Atlassian ‑ because this is

really a great tool that allows you to easy deploy AWS tokens.

The first line of the README says it all if you ask me:

Bootstraps an AWS account with everything you need to generate, manage, and distribute and alert on AWS honey tokens. Made

with breakfast roti by the Atlassian security team.

https://www.flickr.com/photos/80038275@N00/20417718761

PROJECT SPACECRAB is available for download over at BitBucket.

Like PROJECT SPACECRAB Thinkst generates new user tokens with a deny‑all policy. The only action these tokens can perform is the

' sts get-caller-identity ' action, which you literally cannot stop a token from doing. You can then hide these keys away in your

~/.aws/config .

BACK TO IT

Now depending on your configuration and whether you have the facilities to set up an external monitoring service (like Pager Duty) I'm

going to presume that you are using e‑mail. In which case I'd suggest setting up a separate account that isn't tied to your everyday

account. Maybe something through Protonmail.

Now because I am presuming, you're going to have a pretty standard router, I'd suggest looking into Digital Oceans itty bitty droplets

using their One‑Click apps to help quickly deploy Docker. They are spec'd as follows (as of the 12 November 2018):

1 GB Memory

1vCPU

25GB SSD Disk

1TB Transfer

Cost $5.00/month (~$0.007/hr)

However, if you're confident in your networking capabilities and your router, you could always set it up on your perimeter...

Installing Dockerized Canarytokens

For the tl;dr version see the thinkst/canarytokens‑docker README.md.

Pre‑Installation

Before getting started you will need at least one domain name, if you want to enable PDF opening tracking you will need at least two.

You will also need that Docker host setup.

Since the October 17, 2018 you can also configure an AWS ID token if you want to configure AWS canaries.

Getting Started

http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-projectspacecrab.png
https://bitbucket.org/asecurityteam/spacecrab
https://protonmail.com/
https://github.com/thinkst/canarytokens-docker

DNS QuickStart

I'm not going to go into too much detail about how to get DNS configured with Digital Ocean, 1. Because it's not really the point of this

blog post, 2. DNS is terrible and 3. It took me many months to work out why DNS wasn't working for me.

The first thing you will want to do is configure your DNS registrar to point to DigitalOceans name servers. This is different for every

registrar, however, Kathleen Juell has written an easy to understand "How to Point to DigitalOcean Nameservers From Common Domain

Registrars" post (Last Updated: February 22, 2018). This covers popular registrars including:

GoDaddy

HostGator

Namecheap

1&1

Name.com

Network Solutions

eNom

Gandi

Register.com

A Small Orange

iwantmyname

Google Domains beta

You can then follow DigitalOcean's QuickStart guide to add the domain to the droplet.

Once DNS shenanigans are over you can SSH onto your newly created Digital Ocean droplet ‑ you can find the public IP address in the

Droplet interface as shown in the screen capture below:

In your root directory clone the repository. The droplet should come with Git pre‑installed, if not you can run:

$ sudo apt update
$ sudo apt install git

You can confirm Git has been installed correctly by running the following command:

$ git --version
git version 2.17.1

To clone the repository:

$ git clone https://github.com/thinkst/canarytokens-docker
$ cd canarytokens-docker

If you used the DigitalOcean One‑Click apps Docker Compose should already be installed, however if not you can follow the mini‑walk

through below to get it installed.

Docker Compose is available from the official Ubuntu repositories, however it is several minor versions behind the latest release, so

instead we'll install it from GitHub directly.

By using the -o flag to specify the output file first rather than redirecting the output, this syntax avoids running into a permission

denied error caused when using sudo.

As of the 12 November 2018 the latest release was 1.23.1 .

https://www.digitalocean.com/community/tutorials/how-to-point-to-digitalocean-nameservers-from-common-domain-registrars
https://www.digitalocean.com/docs/networking/dns/quickstart/
http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-digitaloceandropletmgmt.png

$ sudo curl -L https://github.com/docker/compose/releases/download/1.23.1`/docker-compose-`uname -s`-`uname -m` -o
/usr/local/bin/docker-compose
Next set the permissions:
$ sudo chmod +x /usr/local/bin/docker-compose
Verify that the installation was successful by checking the version:
$ docker-compose --version
docker-compose version 1.23.1, build xxx

There are two main configuration files that can be found in the root directory:

switchboard.env ‑ contain configuration options for MailGun, Mandrill, SendGrid, public IP address, public domain name, email

configuration details and logging location.

frontend.env ‑ contains configuration options for canary domains, Google API key for location information, image upload path,

and logging location.

Configure the domains you will be using in the frontend.ev first, an example is shown below:

#These domains are used for general purpose tokens
CANARY_DOMAINS=example1.com, example2.com

#These domains are only used for PDF tokens
CANARY_NXDOMAINS=example3.com

#Requires a Google API key to generate incident map
#CANARY_GOOGLE_API_KEY=

In the switchboard.ev file, uncomment the CANARY_PUBLIC_DOMAIN and set it to one of the domains defined previously for the

CANARY_DOMAINS in the frontend.ev file. Keep in mind this will be the domain you will access the Canary Token Generation function

from.

Additionally, if you do not uncomment and set this value the Public IP value will be used instead.

If you are using Mailgun to send emails, you will need to uncomment CANARY_MAILGUN_DOMAIN_NAME and CANARY_MAILGUN_API_KEY in

the switchboard.ev file and set the values.

If you are using Mandrill or Sendgrid instead, uncomment the appropriate API key setting and set it. An example is shown below. * You

can generate tokens on example1.com , example2.com and example3.com (for PDF tokens) * This example would run on the public

domain my.domain.com with a public IP of 1.1.1.1 * Mail is handled using the Mailgun domain name mail.mailhost.com and API

key mymailgunapikey

Finally, initiate and download the images:

$ docker-compose up

During previous installations I have received a 502: Bad Gateway error when attempting to fetch step 7, typically running Docker

compose a few times gets the solution back on its way.

--2018-08-17 02:17:08-- https://github.com/thinkst/canarytokens/archive/master.zip?step=7
Resolving github.com (github.com)... 13.250.177.223, 13.229.188.59, 52.74.223.119
Connecting to github.com (github.com)|13.250.177.223|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://codeload.github.com/thinkst/canarytokens/zip/master [following]
--2018-08-17 02:17:09-- https://codeload.github.com/thinkst/canarytokens/zip/master
Resolving codeload.github.com (codeload.github.com)... 54.251.140.56, 13.229.189.0
Connecting to codeload.github.com (codeload.github.com)|54.251.140.56|:443... connected.
HTTP request sent, awaiting response... 502 Bad Gateway
2018-08-17 02:17:09 ERROR 502: Bad Gateway.

The frontend and switchboard will now be running in the foreground. The frontend is accessible at http://{{ CANARY_PUBLIC_DOMAIN

}}.com/generate

Persisting Data

The tokens are saved in a Redis database file which exists outside of the Docker containers.

In the canarytokens-docker/data directory you should find a dump.rdb database file. To dump all existing token delete dump.rdb .

Enabling HTTPS

There is a separate docker compose file which will mostly automate getting you up and running with HTTPS. You will need to do the

following:

Edit the certbot.env . You will need to provide your domain and email address (these are necessary for the certbot's registration
process). as shown in the example below:

MY_DOMAIN_NAME=example.com
EMAIL_ADDRESS=jay@example.com

Now when you want to bring up your server, you will use:

$ docker-compose -f docker-compose-letsencrypt.yml up

Which will run the server in the foreground, so you can make sure everything gets started alright.

If everything is running, you may want to CTRL+C and run the following:

run docker-compose -f docker-compose-letsencrypt.yml down

http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-canarytokens.png

to get to a clean slate and then rerun

docker-compose -f docker-compose-letsencrypt.yml up -d

-d will run the server in daemon mode.

Please keep in mind that using the HTTPS method will use the email you specified and the domain name to register the certificate. You

can read about the Let's Encrypt process (using cerbot) over here. The process involves verifying that you are the owner of the domain

you have specified and registering you with Let's Encrypt.

It's important to remember there is a rate‑limit so try not to bring the server up and down quickly otherwise you will hit the Let's

Encrypt certificate generation limit.

While you are testing the installation, you can add:

--staging to the ./certbot-auto command

command in the cerbot-nginx/start.sh which will test whether Let's Encrypt gives you the certificate.

Post‑Installation

In some scenarios it may be required to host the Canary Tokens server on the Internet, in other cases you may want it to be

inaccessible to certain users even when run internally. An easy way for this to be achieved is to modify the nginx.conf . This can be
done before you run docker-compose or it can be done when the Docker container is running, however, these changes won't persist if

the docker container is removed.

Disabling /generate

1). You will want to edit the nginx.conf , which can be found in /canarytokens-docker/nginx/ . Using vim :

$ vim /canarytokens-docker/nginx/nginx.conf

2). You will be presented with a nginx.conf that will look something like the example below, which has been clipped for brevity.

nginx.conf

...
 # Proxying connections to application servers
 location / {
 proxy_pass http://frontend:8082/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location /generate {
 proxy_pass http://frontend:8082/generate;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location /download {
 proxy_pass http://frontend:8082/download;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location = /robots.txt {
 proxy_pass http://frontend:8082/robots.txt;

 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location ^~ /resources {
 proxy_pass http://frontend:8082/resources;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }
...

3). For each location that proxy_pass is configured to frontend:8082 you will want to add two new options allow and deny . The
allow option should be configured to the static IP address you wish to allow to view and use the interfaces. deny can be configured

to all if you wish no one except those on the allow list to view the interface, the alternative is to deny only particular static IP

addresses, however, I would recommend the latter option. Your configuration may now look something like below, where 1.2.3.4 is

your actual static IP:

nginx.conf

...
 # Proxying connections to application servers
 location / {
 proxy_pass http://frontend:8082/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location /generate {
 proxy_pass http://frontend:8082/generate;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location /download {
 proxy_pass http://frontend:8082/download;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location = /robots.txt {
 proxy_pass http://frontend:8082/robots.txt;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location ^~ /resources {
 proxy_pass http://frontend:8082/resources;
 proxy_redirect off;

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }
...

4). If you have run docker-compose up already you may need to remove the previously built containers by running docker-compose
rm and then run docker-compose build .

5). Finally, once the container is up and running you should now get a 403 Forbidden error anytime a user tries to access the site. Of

course, you can always make this nicer by redirecting to another service etc. but we won't be covering that here.

Pre‑Installation

If you already have your Docker Container running you can follow the instructions below to disable the /generate interface using

Nginx. Keep in mind that if you ever need to remove the Docker containers the changes will not persist and when you run docker‑

compose the next time these settings will not be configured. Therefore this option is better suited to testing your configuration is

correct.

1). Before starting you will want to find the container ID or the name of the Docker container you wish to connect to, this can be done

by running docker ps . The Thinkst solution is broken up into four different components, you will want to ensure you are connecting to
the thinkst/canarytokens_nginx container:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
a67e3314ec1d thinkst/canarytokens_nginx "/usr/sbin/nginx -c …" 7 days ago Up 7 days
0.0.0.0:80->80/tcp nginx
4449440dd899 thinkst/canarytokens "bash -c 'rm switchb…" 7 days ago Up 7 days
0.0.0.0:25->25/tcp, 0.0.0.0:53->53/tcp, 0.0.0.0:53->53/udp switchboard
04195bdff162 thinkst/canarytokens "bash -c 'rm fronten…" 7 days ago Up 7 days
frontend
c3abeae4e9e1 redis "docker-entrypoint.s…" 7 days ago Up 7 days 6379/tcp
redis

2). docker exec will let you run arbitrary commands inside an existing container. We will want to connect to the

thinkst/canarytokens_nginx this can be done by running the following command, ensuring to replace a67e3314ec1d with the ID of

your container:

$ docker exec -it a67e3314ec1d bash

-i , --interactive[=false] : tells Docker to keep STDIN open even if not attached. This is required if you want to view

information that is provided by STDIN ‑ for example when installing packages.

-t , --tty[=false] : tells Docker to allocate a pseudo‑TTY.

3). You should be dropped into a session on the container, however, there is currently no way to modify the Nginx file, so you will need

to install vim in the container. This can be done by just running apt , as follows:

$ apt-get update
$ apt-get install vim

4). Once you have a text editor installed, you will want to edit the nginx.conf , which can be found in /etc/nginx/ . Using vim :

$ vim /etc/nginx/nginx.conf

5). You will be presented with a nginx.conf that will look something like the example below, which has been clipped for brevity.

nginx.conf

...
 # Proxying connections to application servers
 location / {

 proxy_pass http://frontend:8082/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location /generate {
 proxy_pass http://frontend:8082/generate;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location /download {
 proxy_pass http://frontend:8082/download;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location = /robots.txt {
 proxy_pass http://frontend:8082/robots.txt;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }

 location ^~ /resources {
 proxy_pass http://frontend:8082/resources;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }
...

6). For each location that proxy_pass is configured to frontend:8082 you will want to add two new options allow and deny . The
allow option should be configured to the static IP address you wish to allow to view and use the interfaces. deny can be configured

to all if you wish no one except those on the allow list to view the interface, the alternative is to deny only particular static IP

addresses, however, I would recommend the latter option. Your configuration may now look something like below, where 1.2.3.4 is

your actual static IP:

nginx.conf

...
 # Proxying connections to application servers
 location / {
 proxy_pass http://frontend:8082/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location /generate {
 proxy_pass http://frontend:8082/generate;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;

 deny all;
 }

 location /download {
 proxy_pass http://frontend:8082/download;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location = /robots.txt {
 proxy_pass http://frontend:8082/robots.txt;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }

 location ^~ /resources {
 proxy_pass http://frontend:8082/resources;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 allow 1.2.3.4;
 deny all;
 }
...

7). Finally, restart the Nginx web‑server by running

$ /etc/init.d/nginx reload

8). You should now get a 403 Forbidden error anytime a user tries to access the site. Of course you can always make this nicer by

redirecting to another service etc. but we won't be covering that here, however, nixCraft has a reasonably good tutorial on Creating

Custom 404 / 403 Error Pages on Linux or Unix.

Further Improvements

https://www.cyberciti.biz/faq/howto-nginx-customizing-404-403-error-page/
http://localhost:63342/blog.errbufferoverfl.me/content/blog/agloe-403.png

One issue I often notice while testing websites is unnecessary server headers in HTTP responses, unless there is a business

requirement for these details, they should ultimately be removed as they can provide helpful information to attackers about the

software used by your infrastructure.

The important thing to note is whether you select option one or option two, there is always more than one way to fingerprint a server,

so removing the Server version number doesn't people won't be able to fingerprint the server, it just means they will need to do OTHER

things to fingerprint it.

Also note that if you decide to set a bogus server header, the default Nginx 403 page will still tell people it is Nginx.

You will first need to add an entry to the canarytokens-Docker\nginx\Dockerfile entry like so:

Dockerfile

RUN apt-get -y update \
&& apt-get -q -y -o "DPkg::Options::=--force-confold" -o "DPkg::Options::=--force-confdef" install nginx-extras

I replaced the original apt-get update commands as I found this much easier to read.

You will note the -o "DPkg::Options::=--force-confold" -o "DPkg::Options::=--force-confdef" this is added because typically

when nginx-extras is installed you are asked if you wish to override your original configuration file. Originally, when I was working out

the details of this, it was something I kept getting caught up on because docker-compse build kept failing with the status code 100 .
Adding this option will install nginx-extras with as the flag suggests configuration defaults ‑ which if you check is to not replace the

configuration file. So keep this in mind if you plan on rolling in any other packages.

You will also need to make some additional changes to your nginx.conf file, if you just want the server header to return nginx with

no version number you just need to add the following line to the Dockerfile like so:

nginx.conf

...
http {
 server_tokens off;
 ...
}

If you wish to remove the server header completely, or replace it with something more humorous you will need to make the following

changes:

nginx.conf

Nginx 1.9.11 introduced dynamic modules, which allow modules to be loaded and unloaded as necessary.
This means that in the Docker container the module is compiled, but not loaded.
If you don't add this line you Nginx will fail to reload. Don't say I didn't warn you.

You can put this as the second or third line in the config.
load_module modules/ngx_http_headers_more_filter_module.so;

...

http {
 more_clear_headers Server;
 # Additionally, if you want to annoy those pesky hackers
 # you can also add in a fake Server entry like so
 add_header 'Server' 'lol sorry pal' always;

 ...

}

Wrapping Up

During OWASP AppSec day a few important things were brought up during the Q+A that don't really fit into the blog post but I think are

important to address:

Some Gmail users have reported that PDF attachments in e‑mails caused alerts about once a month, reported IP address came

from within Google's IP address range. Now before you put on your tin‑foil hat and claim Google are reading your e‑mails this can

probably be attributed as a number of things including Google scanning for malicious attachments in PDF files.

@synick informed us that "Next Generation Anti‑Virus" software (like CrowdStrike) can detect canaries ‑ take from that what you

will.

I had a lot of questions about managing canaries in an larger organisation ‑ and it's an interesting and difficult question about what

you are trying to achieve. If you are trying to find an insider threat ‑ educating users on canaries and their locations is probably not

the best idea. But if they are there as a general stop the baddies measure ‑ educating your users about what canaries are and

potentially their placement is not a horrible idea. Keep in mind it might be worth documenting their locations, however it's

important to remember if a Bad Hacker (tm) comes across this sheet they can use this information to their benefit ‑ so manage

these records in the same way you would secrets.

Future Developments:

Google Maps API integration

In‑depth AWS Tokens

Changing CANARY_TOKEN_RETURN=fortune

Slide Deck

You can download my updated OWASP Melbourne AppSec day slide deck from my website (that you are currently viewing).

I think that's everything (at least for now)! I hope you enjoyed this blog post~

Signing out, errbufferoverfl.

https://twitter.com/synick
http://localhost:63342/blog.errbufferoverfl.me/content/blog/%7Bfilename%7D/downloads/owasp_appsec_day_2018_agloe.pdf

